

The Large Hadron Collider at CERN: Entering a new era in unravelling the mystery of matter, space and time

SPS Annual Meeting Basel, 21 June 2010

> Felicitas Pauss CERN and ETH Zurich

Particle Physics

Study the structure of the Universe at its most fundamental level: explore the basic physics laws which govern the fundamental building blocks of matter and the structure of spacetime

Describing the Universe

Describing the Universe

Particle Physics Experiments Accelerators Underground

> Quantum Field Theory Standard Model

Describing the Universe

New Landscape of Physics?

Enter a New Era in Fundamental Science

Start-up of the Large Hadron Collider (LHC), one of the largest and truly global scientific projects ever, is a very exciting turning point in particle physics.

LHCb

Exploration of a new energy frontier Proton-proton Collisions at E_{CM} = 14 TeV Heavy Ion Collisions: Energy/nucleon = 2.75 TeV/u

ALICE

CMS

LHC ring: 27 km circumference

The LHC

Major LHC challenges

Nominal LHC design: 3.2×10^{14} protons accelerated to 7 TeV

Beam energy	7 TeV	High design E _{beam}
Nominal design Luminosity	10 ³⁴ cm ⁻² s ⁻¹	
Dipole field at top energy	8.33 T	SC magnets, He cooling at 1.9K
Number of bunches, each beam	2808	
Particles / bunch	1.15 10 ¹¹	
Typical beam size in ring	200 – 300 μm	
Beam size at IP	16 µm	
Energy stored in the magnet system	10 GJ	large amount of energy stored in
Energy stored in one (of 8) dipole circuits	1.1GJ (sector)	magnets, many bunches with large amount
Energy stored in one beam	362 MJ	of energy stored in beams
Energy to heat and melt one kg of copper	0.7MJ	

Complexity and Reliability: Unprecedented complexity with ~10'000 magnets powered in 1'700 electrical circuits, complex active protection systems (beam loss monitors, interlocks), collimation for machine and experiments

The LHC start-up in 2009

23 Nov 2009:
First collisions at 0.9 TeV

14 Dec 2009:
First collisions at 2.36 TeV

First Collisions at 7 TeV in 2010

LHC: First collisions at 7 TeV on 30 March 2010

.... under the spot light (again) of the world-wide press

Shortly after the first 7 TeV collisions ...

CMS on 30 March 2010:

- 13:10 first approved event display images from CMS for 7 TeV collisions on CMS Web page
- 14:30 fast analysis allowed CMS to reconstruct the π^o peak

Integrated Luminosity since 30 March 2010

Reliable operations with ~18nb⁻¹delivered by LHC Overall data taking efficiency ~ 92 %

Preliminary performance and physics results

Only a few highlights Much more in parallel session talks ...

Detector Performances (examples)

Detector Performances (examples)

Events / (22

Detector Performances

vertex resolution better than $\sim 200 \ \mu m$

W and Z production at 7 TeV

 1^{st} Z event observed on 30 April 1983 at $E_{CM} = 0.45$ TeV

In the 1990's: Millions of Z events analysed at LEP

W and Z production at 7 TeV

Number of events presented at P-LHC Hamburg 7 June 2010

	CMS (~12nb ⁻¹)	ATLAS (~ 7nb ⁻¹)
$W \not \to ev$	40	17
$W \not \to \mu v$	57	40
$Z \rightarrow ee$	5	1
$Z \not \rightarrow \mu \mu$	5	2

Experience from first periods of data taking

Excellent performance of Collider: Highest p-p collisions ever produced

- Excellent readiness of experiments: High data taking efficiency, fast turn-around for results
- Overall good agreement data-simulation

Efficient analysis chain: can extract results very quickly

LHC - Next Steps: 2010 - 2015

Physics at $\sqrt{s} = 7$ TeV: next steps

Re-discover the SM

- Test (re-establish) the SM and then go beyond
 - Measure W and Z production
 - Measure top-quark
- Most SM cross sections are significantly higher than at the Tevatron
 - Example: top-quark

@ 7TeV and $1fb^{-1}$: expect ~ 2 times larger tt \rightarrow l+jets events than CDF/D0 for $10fb^{-1}$

The LHC is a b, top, W, Z ... factory

Physics Examples beyond SM

First "Higgs Event"

.... observed jointly in CMS and ATLAS (April 2008)

Very exciting years are ahead of us

We are ready for an unforeseen event that may or may not occur"

ALICE

CMS

LHC ring: 27 km circumference

A. Gor

ATLA

LHCb

Future of the High-Energy Frontier

CERN became a GLOBAL LABORATORY

Overall increase of CERN Users since May 2001: ~ 50%

- ~30% Member States
- ~100% Observer States (India, Israel, Japan, Russia, Turkey, USA)
- ~ 125% Other States

Due to LHC